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Abstract

A theoretical model that addresses thermochemical erosion in gun tubes is presented. The
model incorporates two interior ballistics codes—XKTC and IBHVG2—and the thermochemical
code BLAKE to provide the necessary state variables and bulk species concentrations of the core
flow as input. This erosion mode] utilizes a Crank-Nicolson integration scheme, with dynamic
gridding capability to account for material ablation, as well as the addition of energy sources and
heat transfer augmentation due to surface deviations. A mass transport scheme, utilizing the
Lennard Jones 6-12 diffusion model, enables individual species to be transported to the surface
from the core flow. Also fully coupled is a separate thermochemical routine which incorporates
the NASA Lewis database. The code is written modularly, enabling the inclusion and
modification of existing submodules. Erosion results comparing a fielded kinetic energy tank
round and a candidate next-generation tank round are presented. The thermochemical effects at
the surface are also shown and discussed.
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1. Introduction

Gun tubes are typically either erosion or fatigue limited in the number of rounds that can be
effectively and safely fired from them. Direct-fire weapons are typicélly erosion-life limited due to
the high-performance requiréments placed upon them. Ammunition for the M256 tank gun is
designed to maximize the kinetic energy of the projectile at launch. 'New performance requirements
have reintroduced gun bore erosion as a significant design issue because erosion will limit the
number of rounds that can be effectively and safely fired over the life of the gun tube. Previous
“solutions” had not identified the fundamental cause of the erosion, and some discrepancies between
the flame temperature correlations [1, 2, 3] and the erosivity were never resolved. Attempts to model
erosion using first principles have been and are currently being made [4, 5, 6], although it is believed
that significant additional work is still required.

A complete description of the erosion process would include a variety of mechanisms produced
by thermal, chemical, and mechanical effects. Generally, thermal erosion is driven by high
convective heating produced by the propellant gases that heat the in-bore surface of the gun tube and
cause it to melt. Chemical erosion is caused by surface chemical reactions produced by the
interaction of the gun tube gases with the in-bore surface of the tube. These reactions may erode the
in-bore surface directly through pyrolysis or produce additional heat to augment the convective
heating, thus inducing melting. The thermal and chemical erosion mechanisms are common and
generally interrelated, while erosion due to mechanical effects (projectile passage) is more isolated
and somewhat independent. In this current work, we have focused on the coupled thermal and
chemical erosion mechanisms, while not excluding the possible addition of the mechanical

contribution in the future.

2. Model Description

The model description is composed of three fully coupled portions consisting of thermal ablation
and heat transfer/conduction, mass transport, and the imbedded thermochemistry, as well as the

intercoupling of these portions.




Following a modular engineering approach resulted in the integration of some of the U.S. Army
Research Laboratory’s (ARL) well-developed tools as well as the development of new modules to
supply additional physics—namely, an interior ballistics code to provide the necessary state variables
and gas velocities XKTC [7], and a chemical equilibrium code BLAKE [8] coupled to an interior
ballistic code, IBHVG2 [9] (thus creating the IBBLAKE [10] code, which provides temporal species
concentrations), as well as the gun tube heat transfer-conduction code XBR-2D [11,12,13].

The current modeling effort considers a melt-wipe model similar to that proposed by Caveny [14],
with the addition of surface chemistry. Conceptually, as shown in Figure 1, the surface heats from
convection until the chemical activation energy is overcome; at this point a surface reaction occurs,
releasing additional energy into the system and producing various products. The reaction products
can either remain, as some solids, or be removed from the area as liquids or gases, thus resulting in -
ablation or pyrolysis, respectively. As the surface regresses, the solids are refreshed when the virgin
substrate material is exposed. The following assumptions have been made in the model:

(1) One-dimensional (1-D) heat conduction is considered.

(2) No subsurface diffusion of species or reactions is considered.

(3) All surface liquids are removed.

(4) All surface gas products are removed.

(5) There is no feedback to the interior ballistics.

(6) Chemical energy released is treated as a source term.

(7) Species are chemically frozen from core flow to wall.
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Figure 1. Conceptual Erosion Model.

3. Ablation-Conduction Model and Computational
Approach

3.1 Analytical Description of the Ablation-Conduction Model [15]. The in-depth
temperature response of the unablated (solid) material is modeled using 1-D heat conduction

equation shown as follows:

oT 138 oT
C, — =——|rf =]. 1
> ,bar(' ar) 0

By setting B = 0 or B = 1, the planar or axisymmetric form of the governing equation can be
obtained. In this form of the equation, the relevant material properties (density [p], specific heat
[C,], and conductivity [£]), the conductivity may vary, with all the others remaining continuous. The

feature of variable conductivity was not utilized in the results presented here.
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At the internal surface of the gun tube, two separate boundary conditions were applied depending
on whether melting of the surface material was occurring. When the surface material was below the

melt temperature, a convective heat transfer boundary condition was applied,

h (Tgas -T, a") = -k % - Source, 2)
with a source term due to the additional energy released from surface reactions. Using the state
variables and gas velocity from the XKTC [7] code, the convective heat transfer coefficient, A, is
determined using the correlation of Stratford and Beavers [16]. Once the surface of the gun tube
reaches the melt temperature, melting of the surface material is assumed to occur. When fully
molten (complete change of phase from solid to liquid), the liquid metal is immediately removed or
ablated by the shearing action of the gun gases. Because surface material is being removed during
the ablation process, the surface location (or the regression rate) becomes an additional variable.

During the ablation process, two boundary conditions are applied as follows:

wall = melt

—k% = h(Tw— Twa”) -pL -g—‘: + Source.
The first equality of the melting boundary condition simply states that the temperature at the
interface, while the phase change is occurring, is equal to the melt temperature. The melt
temperature is assumed to be a known material property. The second equality of the boundary
condition is obtained from an energy balance at the melt surface. In addition to the heat transfer due
to conduction and convection, the additional energy required due to the change of phase from solid
to liquid (latent heat of melting, L) is also included. This boundary condition allows the regression

rate of the solid material to be computed, given that the latent heat of melting, L, is a known material
property.

To provide closure for the in-depth temperature response of the gun tube, a convective boundary
condition is applied to the outer surface of the gun tube.

4




ot (Tt~ T.) = & %rz. B
However, because the erosion process occurs during the first several milliseconds of the firing
process, the heat can only penetrate a fraction of the distance from the inner surface of the gun tube
to the outer surface of the gun tube. In this case, it may not be necessary to model the radial
temperature response of the entire gun tube. By locating the outer edge of the computational domain
so that the temperature response isk‘unchanged during the heating process, a smaller computational
domain may be analyzed. In this case, one of two boundary conditions may be applied—a constant

temperature boundary condition or an adiabatic wall boundary condition.

The appropriate depth of the computational domain can be estimated using a depth of penetration
analysis [17, 18]. The depth of penetration, 8, gives the approximate distance that the heat would
penetrate in a given time ¢ and is a function of the thermal diffusivity of the material, c.

5= /TZat @

Using a factor of safety of two or three & will place the outer boundary of the computational domain
far enough from the bore surface of the gun tube so that the temperature at the outer boundary
remains unaffected by the heating of the gun tube during firing. This analysis enables either single-
firing or rapid, continuous-fire erosion prediction.

The governing equations and boundary conditions are solved using a Crank-Nicolson finite-
difference technique. Prior to the onset of melting, the governing equations and boundary conditions
are linear, and solutions are obtained in a direct (noniterative) fashion. During the melting process,
the equations become nonlinear, since the dimensions of the computational domain are coupled with
the regression rate. An iterative approach is utilized during melting to appropriately address the
nonlinearity.




Because the boundary of the computational domain moves during the erosion event, a
transformed version of the governing equation is cmployed.” This allows the equations to be solved
in a fixed computational space even though the physical boundary is moving. A generalized
transformation between the computational coordinate, £, and the physical coordinate, 7, is utilized.

The transformed equations are shown as follows:

pCP(L aT) = lg_a.(,kgiT.)

o ToE) rTE\ T
_or
_ e _ ot
Et_’e or
o€
1
ErzlE—.
re o
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In this form, the nonlinear nature of the governing equation produced by the moving boundary is
evident because the metric terms, £, and £,, are not constant and are dependent on the erosion rate

when the grid is moving.

3.2 Comparison of Ablation-Conduction Model With Semianalytical Approach of Landau
(Without Source Term). Over the past several decades, numerous studies examining the phase
change process have been made. Results from two of these studies have been compared with the
current numerical method without the inclusion of surface chemistry for simplicity. Landau [19] has
made 1-D time-dependent numerical predictions of a melting solid using a technique similar to that
utilized here. Landau considered the case of a semi-infinite solid subject to a constant heat flux.
Goodman [20] considered similar problems using a heat-balance integral approach that utilizes an
assumed form of the temperature profile to analytically determine the heat conduction and ablation
process. While exact solutions are not typically obtained, the results are reasonably accurate and are
of a simple form. One of the cases addressed by Goodman was the melting of a semi-infinite solid
under constant heat flux. In both cases, an ablative boundary condition was utilized; that is, the

liquid phase was immediately removed following melting.




The problem of the heating on a semi-infinite solid subject to constant heat flux was addressed
using the current numerical method. The solid initially had a uniform temperature distribution of
T, and a specified melt temperature, T,,,,. The temperature change is normalized by 7,,,, - 7,, while
the in-wall depth is normalized by (z,,,®)*. Figure 2 shows the in-depth temperature profile at
several increments in time during the melting process. The results were obtained using material
properties corresponding to gun steel. In addition to the numerical results, the analytical results
obtained using the heat-balance integral approach of Goodman are also shown at the onset of melting
and during steady-state melting. 'fhe numerical solution and the analytical results are in excellent
agreement at the onset of melting. (Though not shown, both results are also in excellent agreement
with the exact analytical solution.) As the melting progresses, the temperature gradient at the heated
interface is reduced due to the additional energy required to melt the solid (latent heat of melting)

as shown in equation 4 repeated here for clarity without the source term

pL§£=h(T -T

oT
ot gas wall )

or

After approximately eight times the time required to reach the melt temperature, the numerical
results show that temperature profile has nearly reached the steady-state temperature profile. The
differences between the analytical and numerical steady-state temperature profile are less than 2%
of the difference between the melt temperature and the initial temperature. Exact agreement between
the two results is not expected because the assumed form of the temperature profile in the

heat-balance integral approach is not an exact solution.

A comparison of the predicted ablation rate obtained using the current technique with the results
of Landau is shown in Figure 3. The current results are in excellent agreement with the results of
Landau for three different sets of material properties including properties close to gun steel, m = 2.26
in Figure 3. (Differences between the results of Landau and the current result may be more related
to problems in extracting the data from the original published graphs of Landau than to numerical
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Figure 2. In-Depth Temperature Profile During Ablation Process for a Semi-Infinite Slab
Subject to Constant Heat Flux.,
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Figure 3. Fractional Ablation Rate vs. Time for a Semi-Infinite Slab Subject to Constant
Heat Flux (m = 2.26 for Gun Steel).
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accuracy.) The Steady-state ablation rate for the current result is also in good agreement with the

exact analytical results presented by Landau.

Up to this point in the report, the convective energy transport, heat conduction, and surface melt
wipe model have been developed. The following section 4 deals with the transport of the mass from
the core flow (center of the bore/chamber) to the wall through the turbulent boundary layer. The
species transported to the surface Wi]l then be reacted with the surface through a procedure outlined

in section 5.
4. Mass Transport and Multicomponent Diffusion

The mass transport is modeled using mass transport coefficients not unlike the heat transport
coefficient. However, because each species may diffuse differently due to its molecular weight, the
proportions at the wall may be different than in the core flow. This requires each species to be
transported individually to the wall through the mixture. Mass transport coefficients are represented
in Sherwood number correlations (Sh = h,L/D,z), as h,,, where L is a length parameter, and the

diffusion coefficient, D,, must also be determined.
A general outline of the mass transport procedure is as follows:

(1) Determine the binary diffusion coefficient for each species using the Lennard Jones potential

parameters.

(2) Determine the mixture diffusion coefficient and viscosity for each specie through Wilke’s

mixing rule.
(3) Determine the mass transport coefficient from the Sherwood correlations.

(4) Solve the boundary condition for each species, similarly to the energy transport.




4.1 Section 1. A reasonable representation of binary diffusion of species “1” into species “2”
is provided by the following relationship using the Lennard Jones 6-12 potential ‘function
parameters [21]:

_ 0.0026280 |/ T* (M, + M,)/2M, M,

) ®)
2 LD*f %
Poj, ng (le)

12

where M,, M, are the molecular weights of the species, T is temperature, P is pressure, and, 6,,’s are
the collision diameters for low-energy collisions. The collisional cross-section integral quantities,
Q’,,’s, are obtained through table interpolation. The potential function for a particular species “i”

governing the Lennard Jones model [21] is presented as

o )2 AL
P.(r) = 4¢ [ _iJ - [ _‘J , )
r, r,
where €, is the depth of the potential well. The potential well depths, €,’s, and the collisional

diameters, o,’s, are provided in tabulated form for various species.

The following nondimensional temperature T)," is used as a tabulation parameter for the

Lennard-Jones collisional cross section, Q°,,, integrals, where k is the Boltzmans constant,
T, = 1%, ™

Combinatory analysis [21] is needed as shown to correctly apply the tabulated single species values

in equation 6 and nondimensionalize the temperature in equation 7.
(o, + 0))
€2 = V& € °12=_‘2—'
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4.2 Section 2. The computed binary diffusion provides the basis for the multicomponent
diffusion coefficient. Each binary diffusion possibility is used and weighted vs. all other poésibilities
in the following mixture coefficient combinatory function [22].

1-X,
D, = —*-.

YL

jvi D‘J

where X; is the mass fraction of series. This function enables the calculation of the diffusion
coefficient for a particular specie “i” into a mixture “m” of many species. Equilibrium calculations
for all service propellants were performed, and all principle products species 6’s and k/€’s along with
the collisional cross sections, Q(7"), were placed into data statements in the diffusion routine. Thus,
tracking of an individual species contribution to the erosion process is possible. The aforementioned

methodology was independently checked against known diffusivities with good agreement.

Utilizing the collisional cross sections, £, ’s, for viscocity and collisional diameters, 6’s, and the
molecular weight, the following relationship derived from kinetic theory [21] is utilized to determine
the mixture viscocity using Wilke'’s rule. The mixture viscosity is used in developing the Reynolds
number and Schmidt number, Sc = p/pD,, 5, Where p is the density.

n = 26693 x 105 YML
o020

4.3 Section 3. The development of the mass transport coefficients may now proceed with the
previously developed computational methodology for both the diffusion coefficients and viscosities

of the species in the mixture.
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Mass transport to the surface from the core flow is provided througﬂ a species concentration -
potential (¢ e ow ~ O; wa) and a mass transport coefficient, A,, for each species. The species
concentration of the core flow is provided by IBBLAKE [10] while the species concentration at the
surface “wall” is what is being sought.

Development of appropriate Sherwood number correlations requires boundary layer analysis and
experimental data. Mass transport for a transient boundary layer development as shown in Figure 4
has been derived [23] and will be presented here for a periodic transitional sublayer boundary layer
model that assumes infrequent penetration to the surface (thin wall layer) by eddies entering the
boundary layer. This approach enables predictions of transfer rates matching experimental data over
a wide range of Schmidt numbers. The thin laminar wall layer beneath the boundary layer is
periodically replenished with species from the sublayer, however at a much slower rate than the bulk
wall region. The importance of the thin wall layer determines the treatment of the model.

Sublaysr development phase l

l Ejection into the
l Transient ; ¢5] turbulent core.
Steady conditions conditions k

Sublayer breakdown due to
rapidly growing instabllity.

l , dy, Thin wall-layer.

Figure 4. Idealized Boundary Layer Development [23].

At moderate Schmidt numbers (10 < Sc < 1,000), the thickness of the boundary layer is much
greater than the thickness of the viscous sublayer. This enables the accumulation in the wall layer
to be neglected. Ruckenstein [24] assumed the following linear pressure gradient model to govern
the mass transport to the surface through the thin wall layer

12




.k
m=6—l(P0—P1),

where k is the conductivity and , is the thickness of the thin wall layer. Utilizing the momentum
integral method [23], the following Sherwood number has been derived:

9 1 1 1
sy = 0:0097Re 1°Sc? (1.10 + 0.445c 3 - 0.70Sc 6)

1 1 1
1 + 0.0645c 2 (1.10 + 0.44S5c 3 - 0.70Sc 6)

For higher Schmidt numbers (Sc > 1,000) the thickness of the boundary layer becomes of the
order of magnitude of the thin wall layer. The mass transport for this range is governed by the
penetration of eddies into the boundary layer, in this case the wall layer [23]. This description,
assuming characteristic distances between eddy disruptions is larger in the wall layer than it is in the
boundary layer and Blasius expression for the friction factor, leads to the following Sherwood

number: 9 |

Sh = 0.0102Re 1 Sc3.

These expressions for the Sherwood number have been compared [23] with much experimental
data and agree very well within the Schmidt number regions specified.

4.4 Section 4. The Sherwood number values and appropriate diffusivities enable the calculation
of the mass transport coefficient that closes the boundary condition. The mass transport coefficients,
h,.’s, are derived from Sherwood number correlations, Sh = k,L/D,,, and integrated over space and
time, as shown, to provide the temporally varying species at the surface.

Massi = f f hm (d)icore-ﬂow - (biwall) dAds.

13




Although the gaseous species are assumed to not penetrate the surface at this time, the diffusion
module is general enough to readily incorporate this possibility in the future. '

At this point, both the convective energy transport and mass transport have been presented.
Thus, the state properties as well as surface concentrations of specific species have been described.
At this point, some treatment of the solid-gaseous interaction can be made. Due to the lack of
understanding of both the specific surface reactions and rates associated with these reactions under
ballistic conditions, infinite rate kiﬁetics have been applied in this model as a first approximation to
the surface chemistry. A brief description of the energy minimization methodology for equilibrium

reactions follows.
S. Equilibrium Kinetics

Equilibrium chemical processes are considered to dominate whenever the characteristic time for
a “fluid element” (discritized element in finite difference model of a continuum region of a fluid
dynamic event) to traverse the “flow field of interest” (a fluid dynamic event) is much longer than
the characteristic time for chemical reactions to approach equilibrium. As the pressure and
temperature increase, the molecular collision frequency and energy per collision increase, which
leads to smaller characteristic chemical times. Thus, chemical processes approach equilibrium

(i.e., occur at almost an infinite rate).

Chemical equilibrium is usually described by either of two equivalent formulations: equilibrium
constants or minimization of free energy. Several disadvantages of the equilibrium constant method
have been noted [25], and most researchers prefer the free-energy minimization formulation. The
condition for equilibrium may be stated in terms of any of several thermodynamic functions such as
the minimization of the Gibbs free energy or Helmholtz free energy or the maximization of entropy.
For a mixture of N species (e.g., atoms or molecules) with the number of moles of species denoted

n,, the Gibbs energy per mole of mixture is given in terms of the Gibbs free energy of the individual

14




species, g;, the internal energy, e, the temperature, 7, the entropy, s, the pressure, p, and the spccxﬁc

volume, V.
G=Ef.v=1 ng =e-Ts +pV. -

The equilibrium method employed in the present study is based on the fact that at equilibrium
the total Gibbs energy of the system attains a minimum value. The problem is to find the set of n,’s
that minimizes the Gibbs free ehergy for a specified energy and volume (e,V), subject to the
constraints of material balances. The standard solution to this type of problem is based on the
method of Lagrange’s undetermined multipliers. First, we must recognize that the total number of
atoms of each element in the system is constant. Denoting a particular atomic species with subscript
k, then A, is the total number of atomic masses of the kth element in the system, as determined by
the initial constitution of the system. Denoting the number of atoms of the kth element present in
each molecule of chemical species i by a;, then the material balance on each element k¥ may be

written (M used here is the number of elements),
A (X may, - 4,) =0 k= 1,2,...M) @®)

introducing Lagrange multipliers, A, , for each element. Then a new function, F, is formed by
addition of the last equation to G,,;. The function F is identical to G,,,, since the summation term
is zero. However, 0F/0n; and 8G,,,,/On; are different since F incorporates the constraints of the

material balances. The minimum of both F and G,,,, occurs when these partial derivatives are zero.

F = Gtotal :ll A‘ (ENI n a k)
oF aGaal M
(E] = [#—] + 34 Ma, =0 (for Fo.).
t/ eV,n, P JeVin

LR Al ]
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This equation can be rewritten using the definition of chemical potential o, for species i, where R,

is the universal gas constant.
oG '
6,. = ( total] = Gio + RuTln ( ai),
eV,

8 + Y4y Ma, =0 (i=1,2,.,N). ©)

The standard Gibbs-energy change of formation for species i is denoted G/, which is equal to zero
for elements in their standard states. The activity for species i in solution is given by «;, defined in

terms of the equilibrium constant K as

k-I0 o,

where the activities of the components are raised to the corresponding stoichiometric coefficients, v,.

For an ideal gas mixture (X; ¢, = 1), where ¢, is the void fraction,
@ =f=X,op =p,
J; is the fugacity and X; is the mole fraction for the ith species. For liquids and solid phases,
In(e;) = In (1 - 1/p),
which is approximately zero for large pressure; therefore, 0, =G".
There are N equilibrium equations (equation 9), one for each species, and there are M
material-balance equations (equation 8), one for each element, a total of N + M equations. The

unknowns in these equations are the n,’s, of which there are N, and the Ay’s, of which there are M,

a total of N + M. Thus, the number of equations is sufficient for the determination of all unknowns.
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Numerical experiments were performed on this portion of the code as well to independently
verify reaction calculations results from this routine with known results. Principally, known gas

phase systems were investigated. The results of which compared exactly with those of the NASA-
Lewis equilibrium code [25].

6. Surface Erosion Results

Due to current development programs, the first application of the coupled ablation-chemical
surface reaction model has been directed toward direct-fire systems. The model is used to compare
the relative erosion performance in the M256 cannon firing the M829A1 KE projectile and an
advanced KE projectile concept round. Both of these rounds are built from similar propellants,
although the flame temperature of the M829A1 propellant is lower than that of the advanced concept.
The thermal performance of the M829A1 KE round has been investigated previously [26] with
excellent agreement between the model and existing experimental data, as was the case with

" numerous previous applications [12, 13].

The ARL erosion code calculations require a core flow thermochemical output from IBBLAKE,
and an XKTC output file including the spatially varying gas pressure, temperature, and velocity [27].
For both calculations, the batrel was assumed not to have a chrome layer. Once degraded, the
chrome’s effectiveness is small [28]. It will be seen that this assumption possibly has some validity
for the advanced KE round, while for the less viscerative M829A1 round this assumption appears

to be somewhat excessive.

Results of the calculations are shown in Figures 5-10. Figures 5 and 6 show surface temperature
predictions for both the M829A1 and the advanced round at three‘represcntative axial locations,
640 m, 1,050 mm, and 1,350 mm from the rear face of the tube (RFT). The 640-mm location is near
the forcing cone region. One can see from Figure 5 that the surface just reaches the specified melt
temperature at the 640-mm axial location, while at the more distant locations down-bore, the surface

does not reach the melt temperature. Experimentally, bore erosion has been observed at both the
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640-mm and the 1,050-mm locations, but not at the 1,350-mm locations in tubes having fired the
M829A1 round [28]. Looking at Figure 6, what is first néticed is that the melting in this case is
much more severe and for a much longer duration at all three axial locations predicted. Also noted
is that the peak temperature for this round is reached somewhat later and longer in duration than that
of the M829A1. This is due to the different propellant grain geometry, which was designed to create
just such an effect in the pressure profile, in order to optimize the ballistic performance with the

given constraints.

The erosion for the M829A1 round is typically located near the forcing cone at 640 mm.
However, erosion has been observed initiating somewhat down-bore at the 1,050-mm location in
some guns. This “abnormal” erosion pattern is under investigation and is believed to be due
somewhat to the interaction of the forward bore rider with the tube, in a scraping, or perhaps the
aluminum bore rider is reacting with existing atmospheric oxygen in the tube forward of the
projectile [28]. This would increase the rate of chrome removal at these specific locations and thus

expose the underlying bare steel.

Figures 7 and 8 show the predicted resultant surface heat fluxes due to convection and
thermochemical reactions. Notice that in both cases the level of thermochemical energy imparted
to the surface is on the order of 1% of the total energy. This is intuitively correct because convective
heat transfer calculations gave very good agreement with experimental data [26]. The M829A1 flux
rises and decays much more rapidly than that of the advanced round, again due to the charge design.
The advanced round shows a spike at the peak of the flux that is believed to be caused by the
“slivering” (the point at which the grain burns through its web) of the grain.

Predicted erosion rates are shown in Figure 9 for both rounds. The erosion rate for the M829A1
is almost an order of magnitude smaller than that of the advanced round. Even though the surface
temperature is constant during melting, the erosion rate follows the heat flux contour, including the
spike at the peak heating rate. The erosion rate decreases for the advanced round as the axial

location increases from the RFT.
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Figure 5. Predicted Surface Temperatures for the M829A1 KE Round in a Nonchromed
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Figure 10 reveals the amount of material removed per round fired, for both rounds. The M829A 1
erodes much less at the forcing cone region than the advanced round. The predicted erosion is about
16% below the experimental data (average of 39 rounds) for the advanced round and a bit high for
the average M829A1 round. For the “abnormal” erosion described previously, the M829A1
calculations were within the data range. The use of constant physical properties in the calculations
probably accounted for some of this discrepancy [28, 29]. It is also possible that for the M829A1
rounds more chrome existed at the surface near the forcing cone, thus inhibiting the erosion.

7. Surface Chemistry Results

Table 1 is representative of the chemistry occurring at the surface, at a specific location, during
the peak surface temperature time step. Both the unreacted (input) and reacted (output) species from
the thermochemical calculation are presented. A total of 34 species were considered for both the
M829A1 and advanced KE penetrator, although many of the potential product species were not
formed. A user may choose any material for the surface or any additional gas products from the
propellant combustion. For these calculations O,, CO,, H,, CO, H,0, N,, SO,, and NO represented
about 98% of the combustion products. The surface was considered to be steel consisting of Fe(A),"
Cr,0,, NI(B), and C(GR)." The following species were included in all of the thermochemical
calculations; however, they converged to a value within an internally specified tolerance on the mass
fraction for zero: NI, NIO, NO,, HNO, HCO RAD, CRO, CRO,, SO, COS, S, , FEO(S),! FEO(L),”
FE, FEO, FEO,H,, FE(L), FE,O(S), OH, OH+, and S.

The preliminary equilibrium chemistry results from both rounds were basically the same because
of the similar propellant formulation. Due to the chemical equilibrium assumption and the affinity
for CO, formation, carbon and oxygen are formed from the “apparent breakdown” of the CO,
reactant at the surface. The molecular oxygen reacts with the molecular hydrogen to make water,
while the carbon forms graphite. The added FE(A) goes through the phase transition to FE(C),} and
the additional NI(B) melts. During this time step and at this location, the surface is regressing and
is being replenished with fresh “steel.” The CR;0; in the steel acts inertly, as does the N, from the

* A - Base-centered cubic; ' GR - Carbon graphite; Ss- Solid; "’ L - Liquid; * C - Face-centered cubic.
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Table 1. Representative Chemical Reactants and Products During Melting of the Surface

Energy Released (J/kg) = 12218.7
Time (ms) = 5.349 Unreacted Species at the Reaction Products at the
Surface (Input) Surface (Output)
Fraction Mass (kg) Fraction

H, 0.4553E-06 | 0.1147E-01 0.8000E-20 | 0.2016E-15

" 0, 0.9061E-13 | 0.2283E-08 | 0.1270E-18 | 0.3200E-14 II

| co 0.7709E-05 | 0.1943E+00 | 0985SE-05 | 0.2483E400 |
Co, 0.6656E-05 | 0.1677E+00 | 0.1747E-18 | 0.4401E-14 II
H,0 0.3950E-05 | 0.9953E-01 0.8019E-05 | 0.2021E+00 II
SO, 0.0000E+00 |} 0.0000E+00 | 0.2542E-18 | 0.6406E-14 "

" N, 0.1073E-05 | 0.2704E-01 0.1073E-05 | 0.2704E-01
NO 0.2222E-11 | 0.5599E-07 | 0.1191E-18 | 0.3001E-14
C(GR) 0.8020E-07 | 0.2021E-02 | 0.9766E-06 | 0.2461E-01
FE(A) 0.1759E-07 | 0.4432E-03 0.2216E-18 | 0.5585E-14
NI(B) 0.3299E-09 | 0.8313E-05 0.2330E-18 | 0.5870E-14
CR,04(S) 0.1634E-06 | 0.4117E-02 0.1634E-06 | 0.4117E-02
FE(C) 0.1958E-04 | 0.4934E+00 | 0.1960E-04 | 0.4939E+00
NI(L) 0.0000E+00 | 0.0000E+00 | 0.3299E-09 | 0.8313E-05

Total Mass (kg) Total Mass (kg)
0.3969E-04 0.3969E-04

Before Sum of Mass
Fractions = 0.1000E+01
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gas. One interesting point is that the graphite formed may create a physical property modlﬁcatlon
if it dissolves or diffuses into the surface of the steel.

8. Discussion

A numerical method for estimating the erosion that occurs within gun tubes due to high
convective and chemically reactive in-bore heating has been developed. The method has been
successfully applied to estimate the erosion that may occur during the firing of M829A1 and
advanced kinetic energy projectiles fired from an M256 cannon that has the chrome chipped away.
While chrome is present, the surface does not reach a high enough temperature to enable the chrome
nor the substrate to melt. If the surface is gun steel (i.e., the chrome has chipped off), then the
predicted levels of erosion are roughly in agreement with experimental observations at the forcing
cone. The prediction for the M829A1 is probably high due to the absence of chrome in the model,
whlle the computed values for the advanced KE round were a bit low, possibly reinforcing the
assumption that the chrome was not very effective in protecting the surface. With the addition of
currently excluded physics, such as surface layers, surface defects, gas intrusion, species diffusion,

and in-wall altered material properties, the predictions should improve.

The current model provides the U.S. Army with the ability to predict the effects of modifications
to the propelling charge and to the chemical propulsion technique (i.e., 1iqﬁid or solid propellants).
It is evident that small chemical formulation changes greatly alter the erosion behavior [30].
Tracking these chemical modifications and their impact on the erosion behavior is now possible.
This tool may be especially useful in estimating the erosive behavior before the development of new
charges. It is intended to be used as a platform to build upon to include the mechanical portion of
the erosion and to investigate other physics of interest such as the effect of wear-reducing additives
and surface treatments. Potentially, newer and more direct mitigation techniques may be identified
once the causality oan specific erosion problem is determined. Also, this model has been written
to incorporate boundary conditions from future interior ballistic codes such as NGEN [31]. NGEN
will be fully turbulent, enabling the turbulent reacting boundary layer to be computed. This coupling
will strengthen the mass and heat transfer physics and enable more confidence in the solutions.
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